: QL . He

Models for
Bitcoin
* smart contracts

Massimo Bartoletti

University of Cagliari % O

O
Polimi Fintech Journey 2018

O

joint work with...

—_

Nicola Atzei
Tiziana Cimoli - (@ UniCA)
Stefano Lande

—

Roberto Zunino (@ UniTN)

Smart contracts

A smart contract is a computerized protocol that executes
the terms of a contract [...] to minimize the need for trusted
intermediaries and transaction costs.

Nick Szabo, 1994
Smart contract platforms

Ethereum
Hyperledger
Rootstock, Tezos, ... (?)

Smart contracts

A smart contract is a computerized protocol that executes
the terms of a contract [...] to minimize the need for trusted
intermediaries and transaction costs.

Nick Szabo, 1994

Smart contract platforms

Obitcoin

Why smart contracts on Bitcoin?

exchange BTC (rather than ETH)

underlying guarantees (theorems!) on the

security of the blockchain
|Garay,Kiayias,Leonardos, EUROCRYPT’15] [...]

bugs in Solidity code are difficult to spot
(recall the DAO and the Parity attacks!)

narrower attack surface (txs vs. EVM/Solidity)

Bitcoin smart contracts

Bitcoin contracts are cryptographic protocols
to transfer BTC, executed respecting the
consensus protocol of the blockchain.

Problems

Bitcoin was not designed for smart contracts
...still, many use cases exist
unclear expressiveness (off-chain protocols!)

Low level scripting language
poorly documented
standards to adhere (minimal push, P2SH, ...)
subtleties require to inspect Bitcoin Core source code

no formal specification
= no automatic verification

Example 4: Using external state

Scripts are, by design, pure functions. They cannot poll external servers or import any state that may change as it would allow an attacker to
outrun the block chain. What's more, the scripting language is extremely limited in what it can do. Fortunately, we can make transactions
connected to the world in other ways.

Consider the example of an old man who wishes to give an inheritance to his grandson, either on the grandson's 18th birthday or when the man
dies, whichever comes first.

To solve this, the man first sends the amount of the inheritance to himself so there is a single output of the right amount. Then he creates a
transaction with a lock time of the grandson's 18th birthday that pays the coins to another key owned by the grandson, signs it, and gives it to him -
but does not broadcast it. This takes care of the 18th birthday condition. If the date passes, the grandson broadcasts the transaction and claims the
coins. He could do it before then, but it doesn't let him get the coins any earlier, and some nodes may choose to drop transactions in the memory
pool with lock times far in the future.

The death condition is harder. As Bitcoin nodes cannot measure arbitrary conditions, we must rely on an oracle. An oracle is a server that has a
keypair, and signs transactions on request when a user-provided expression evaluates to true.

Here is an example. The man creates a transaction spending his output, and sets the output to:

<hash> OP DROP 2 <sons pubkey> <oracle pubkey> CHECKMULTISIG

This is the oracle script. It has an unusual form - it pushes data to the stack then immediately deletes it again. The pubkey is published on the
oracle's website and is well-known. The hash is set to be the hash of the user-provided expression stating that he has died, written in a form the
oracle knows how to evaluate. For example, it could be the hash of the string:

if (has_died('john smith', born on=1950/01/02)) return (10.0, 1JxgRXEHBi86zYzHN2U4KMyRCg4LvwNUrp);

This little language is hypothetical, it'd be defined by the oracle and could be anything. The return value is an output: an amount of value and an
address owned by the grandson.

Once more, the man creates this transaction but gives it directly to his grandson instead of broadcasting it. He also provides the expression thatis
hashed into the transaction and the name of the oracle that can unlock it.

It is used in the following algorithm:

1. The oracle accepts a measurement request. The request contains the user-provided expression, a copy of the output script, and a partially
complete transaction provided by the user. Everything in this transaction is finished except for the scriptSig, which contains just one
signature (the grandson's) - not enough to unlock the output.

2. The oracle checks the user-provided expression hashes to the value in the provided output script. If it doesn't, it returns an error.

. The oracle evaluates the expression. If the result is not the destination address of the output, it returns an error.

W

4. Otherwise the oracle signs the transaction and returns the signature to the user. Note that when signing a Bitcoin transaction, the input script
is set to the connected output script. The reason is that when OP_CHECKSIG runs, the script containing the opcode is putin the input being
evaluated, _not_ the script containing the signature itself. The oracle has never seen the full output it is being asked to sign, but it doesn't
have to. It knows the output script, its own public key, and the hash of the user-provided expression, which is everything it needs to check the
output script and finish the transaction.

5. The user accepts the new signature, inserts it into the scriptSig and broadcasts the transaction.

Bitcoin contracts in literature

1)
2)

3)
4)

5)

0)

n _ Pre-condition:
The key pair of C is C' and the key pair of each P; is P;. B
The Ledger contains n unredeemed transactions Uf, ..., US, which can be redeemed with key C, each having value d B.
The CS.Commit(C,d. 1, s) phase
The Committer C computes h = H(s). He sends to the Ledger the transactions Commity, ..., Commit,. This obviously means that

he reveals h, as it is a part of each Commit;.
If within time maxj ¢gger Some of the Commat; transactions does not appear on the Ledger, or if they look incorrect (e.g. they differ in

the h value) then the parties abort.
The Committer C creates the bodies of the transactions PayDeposit, ..., PayDeposit,,. signs them and for all i sends the signed body
[PayDeposit;] to P;. If an appropriate transaction does not arrive to P;, then he halts.

The CS.Open(C,d,t,s) phase
The Committer C sends to the Ledger the transactions Open, ..., Open, . what reveals the secret s.
If within time ¢ the transaction Open; does not appear on the Ledger then F; signs and sends the transaction PayDeposit; to the Ledger
and earns d B.

Bitcoin transactions

Bitcoin in a nutshell

Alice

@ﬁg

11

Bitcoin in a nutshell

Alice

Transaction

Blockchain

12

Bitcoin in a nutshell

.
— >
.
.
\/ -
-
-
”
..................... oo
- -
- -
- -
- -
- -
-
- -
—” -
- -
- -
- -
- -
- _ -
-
-
f’
-
-
-

Alice owns 1BTC Safoshi

Signature

13

Bitcoin in a nutshell

Alice Bob

T

Alice owns 1 BTC Saboshi

Tl
""""""" Bob owns 1BTC

14

Bitcoin in a nutshell

Alice Bob

T T

Alice owns 1BTC Safoshi Bob owns 1BTC ice

Bitcoin in a nutshell

Alice Bob

T

Alice owns 1 BTC Saboshi

T

Bob owns 1BTC Wice

16

More advanced features

8 00
Multi-input >

Custom out scripts:
out = Ax.e

@

Multi-output

=
@
N

Timelock
constraints

17

Example: Bitcoin scripting language

Stack-based language for out scripts

OP_SHA256 52..3e OP_EQUAL OP_SWAP 064..91
OP_CHECKSIG OP_BOOLOR OP_SWAP 04..46d
OP_CHECKSIG OP_BOOLAND

Difficult to write and to read

No formal semantics

18

TxCopy

Example: signature verification
Step 6: Copy TXNeW to Txcopy (to be mOdIﬁed) F} |v 32 lalvx Sig MKQ)’I" 32 Ialvx Sig wm..,la i & lvx PScript 8 |fvr PScript 3 |
Step 7: Set all TxIn scripts in TxCopy to empty strings R BN T T B TxCopy
Make sure that the VAR_INT's representing script length are Fé 1 ~ £ $ ol 5‘9
reevaluated to a single 0x00 byte for each TxIn & & £ £ G
Step 8: Copy Subscript into the TxIn script you are checking: - | s [swscnrr [2 [o Jol msew |6 ol s] TxCopy
Make sure VAR_INT preceding SUBSCRIPT is reevaluated £é s ~ H N P &£
to represent the size of SUBSCRIPT & & &£ £ o
[or-0ur [susrce]crcitentadars] o couvene [or cecxsa | scnwr st
(from Step 4)

Step 9: Serialize TxCopy, append 4-byte hashTypeCode

Verify signature against string in Step 9,
(hashed string needs to be big-endian)

Step 10:

verifyThisStr

i

hashTypeCode
(little-endiany

TxCopy.serialize()

ECDSA_CheckSignature(pubKeyStr , sigStr, sha2562(verifyThisStr))

19

A formal model of Bitcoin transactions”
Abstracts from low-level details

Concrete enough to be used as an alternative
documentation

Formalises advanced features, e.g.:

Custom out scripts
Signature modifiers
SegWit

Exploitable to build further abstractions...

* Atzei, Bartoletti, Lande, Zunino. Financial Cryptography 2018

20

Bitcoin transactions

Alice

®° 6

TA

B

21

Bitcoin transactions

Alice

®° 6

TA

B

in:

TA

22

Bitcoin transactions

Alice

®° 6

TA

O

B

in: TA

out: Ax.ver .(x), 1 BTC

23

Bitcoin transactions

Alice

®° 6

TA

O

B

in:

out:

TA

Ax.ver .(x), 1 BTC
/T

N

Mout": [

3]

{"value":"1.00",
"scriptPubKey":"OP_SHA256 3e..00
OP_EQUALVERIFY b5..e2 OP_CHECKSIG"

24

Bitcoin transactions

Alice

®° 6

TB.wit TA.out

The witness
satisfies the
out script

TA

O

B
in: TA
wit: sig,,(TB)
out: Ax.ver, .(x), 1 BTC

25

General form of transactions

T.wit(l) F Tl.out(1)

T.wit(2) = T2.out(3)

T1

T2

O

T

in:
wit

out:

(T1,1); (72,3)
sig, (T); sig,(T)

Ax.ver, (x), 1 BTC;
Ax.ver, ,(x), 1 BTC

26

Time constraints

T1

T2

in:

absLock:
relLock:

(T1,1); (72,3)

after 8.3.2018
2 days after T1,
3 days after T2

27

A formal model of Bitcoin transactions

Script

/\

Transaction

Substitution

Blockchain

Unspent
output

Signature S|gr)atu_re SCFIpF
verification evaluation
Script
verification
Output
redeeming
Consistent Consistent
update blockchain
LTS of Theorem: Th.eorem:.
. No double Non increasing
blockchain .
spending value

28

Theorem: No double spending

If B is a consistent blockchain, then

ran(T,

VT #zT €B

.in) Nran(T,

in)

@

T1

T2

29

Theorem: No double spending

If B is a consistent blockchain, then

ran(T,

VT #zT €B

.in) Nran(T,

in)

@

T1

30

BALZaC: Bitcon Abstract Language, analyZer and Compiler

Bitcoin Transaction Model
Web Editor

Select an example ¥

package example

transaction T {

input =

output = 10 BTC: fun(x) . x==42
}

transaction T1 {

& 9 input = T:43

410 output = 10 BTC: fun(x) . x==x
11 |}
2
13 |compile T T1

co~NOUL B WN -

https://blockchain.unica.it/balzac
https://github.com/balzac-lang/balzac

BALZaC: Bitcon Abstract Language, analyZer and Compiler

package example

transaction T {

input = _

output = 10 BTC: fun(x) . x==42
}

transaction T1 {
input = T:43

PR r PR

VCOoO~NOTULIE WN =

This input does not redeem the specified output script.
jDetails: P2SH script execution resulted in a non-true stack: []

INPUT: PUSHDATA(1)[2b] PUSHDATA(3)[012a87]

OUTPUT: HASH160 PUSHDATA(20)[afc0a51d093e9fc21dd64ef3add6130f4e402087] EQUAL
REDEEM SCRIPT: PUSHDATA(1)[2a] EQUAL

REDEEM SCRIPT HASH: afc0a51d093e9fc21dd64ef3add6130f4e402087

BALZaC: Bitcon Abstract Language, analyZer and Compiler

[y

o P

package example

transaction T {

input = _

output = 18 BIC: fun(x) - x==42
}

transaction T1 {
input = 1:43
oufput = 18 BTC: Tun(x) « X==x

QwVwWooO~NOTULTA WN =

wn

cript will always evaluate to true

-

=
w

compile T T1

Smart contracts

(as endpoint protocols)

Example: timed commitment

Bitcoin smart contracts are crypto protocols,
which exploit advanced features of transactions

Alice wants to commit a secret s but reveal
it some time later

Bob wants to be assured that he will either:
learn the secret within time't

or be economically compensated

[Andrychowicz et al. 2014]

35

Example: timed commitment

A chooses a
secrets

She broadcasts h
s.t. h=H(s)

She can reveal
the secret before
time t

Commit

out:

AXGO.
(H(x)=h and ver (o)) or
afterAbs t: ver (o), 1BTC

36

Example: timed commitment

A chooses a
secrets

She broadcasts h
s.t. h=H(s)

She can reveal
the secret before
time t

Commit

out:

AXGO.
(H(x)=h and ver (o)) or
afterAbs t: ver (o), 1BTC

37

Example: timed commitment

A chooses a
secrets

She broadcasts h
s.t. h=H(s)

She can reveal
the secret before
time t

Commit

out:

AXGO.
(H(x)=h and ver (o)) or
afterAbs t: ver (o), 1BTC

38

Example: timed commitment

A chooses a
secrets

She broadcasts h
s.t. h=H(s)

She can reveal
the secret before
time t

Commit

out: Axo.
(H(x)=h and ver

an C
afterAbs t: ver (o), 1BTC

s)) or |- :

O

Reveal

wit: s
sig,, (Reveal)

l

&

5 sig,,(Timeout)
- absLock: t

39

Example: timed commitment

Commit
After time t, A—
B can redeem (H(x)=h and ver, (o)) or
the deposit afterAbs t: ver (o), 1BTC

O

................................. Voo

. Reveal Timeout

WAt < o wite 0,

) ’ sig,,(Timeout)
s1gkA(Reveal) absLock: t

S r— é |

&

Other Bitcoln contracts

Oracles

Crowdfunding

Escrow and arbitration

Micropayments channels (“Lighting network”)
Fair multi-player lotteries

Gambling games (Poker, ...)

Contingent payments (via ZK proofs)

41

Contracts as processes

put ask put ask

< —l
send/receive

SoK: unravelling Bitcoin smart contracts
(POST18) 42

Timed commitment (in prose)

1)
2)

3)
4)

5)

0)

n _ Pre-condition:
The key pair of C is C' and the key pair of each P; is P;. B
The Ledger contains n unredeemed transactions Uf, ..., US, which can be redeemed with key C, each having value d B.
The CS.Commit(C,d. 1, s) phase
The Committer C computes h = H(s). He sends to the Ledger the transactions Commity, ..., Commit,. This obviously means that

he reveals h, as it is a part of each Commit;.
If within time maxj ¢gger Some of the Commat; transactions does not appear on the Ledger, or if they look incorrect (e.g. they differ in

the h value) then the parties abort.
The Committer C creates the bodies of the transactions PayDeposit, ..., PayDeposit,,. signs them and for all i sends the signed body
[PayDeposit;] to P;. If an appropriate transaction does not arrive to P;, then he halts.

The CS.Open(C,d,t,s) phase
The Committer C sends to the Ledger the transactions Open, ..., Open, . what reveals the secret s.
If within time ¢ the transaction Open; does not appear on the Ledger then F; signs and sends the transaction PayDeposit; to the Ledger
and earns d B.

43

Timed commitment (as an endpoint protocol)

Compensation
branch

P,= putCommit.P’

O
O

P’= 1.putReveal(s) + T.P”°

P, = putTimeout

+ ask Reveal as x > Q(getSecret(x))

44

Contracts

(as choreographies)

BitML contracts

Endpoint protocols = local behaviour
compensations lead to complex code
still have to deal with Bitcoin transactions

BitML = global behaviour
contracts as processes (no transactions)
two-phases: stipulation and execution
no compensations

Bartoletti & Zunino. BitML: a calculus for Bitcoin smart contracts, 2018

46

A basic example

A declares a 1B deposit:
{A: 1B}

A authorizes to transfer the deposit to B, or
B authorizes to transfer the deposit to A

PayOrRefund =
A:withdraw B + B:withdraw A

47

Mediating disputes (with oracles)

Resolve disputes via a mediator M (paid 0.1B)

Escrow = PayOrRefund +
A:Resolve +
B:Resolve

Resolve = split
0.1B > withdraw M
| 0.9B > M:withdraw A + M:withdraw B

48

Timed commitment

{A:11B | A:secret a}

TC reveal a.

+ after t

withdraw A

withdraw B

49

BitML: a 2-players lottery

{A:13B | A:secret a | B:!3B | B:secret b}

split
2B > reveal b if 0<|b|=<l. withdraw B
+ after t : withdraw A
|12B > reveal a . withdraw A
+ after t : withdraw B
|12B > reveal a b if |a|=|b|. withdraw A
+reveal a b if |a|Z|b|. withdraw B

50

Executing BitML on Bitcoin

Compiler: BitML > BALZaC - Bitcoin txs

Theorem (Computational soundness):

For each computational run C, there exists a
symbolic run S coherent with C

Therefore, computational attacks are always
represented at the symbolic level.

51

The whole talk in 1 slide

Bitcoin transactions

Contracts as

endpoint protocols

SoK: unravelling Bitcoin

smart contracts

(POST18)

A formal model of

Bitcoin transactions
(FC18)

Contracts as
choreographies

BitML: a calculus for Bitcoin

smart contracts
(submitted)

52

Thank you

