
Models for
Bitcoin
smart contracts

Massimo Bartoletti
University of Cagliari

Polimi Fintech Journey 2018

joint work with...
Nicola Atzei
Tiziana Cimoli
Stefano Lande

Roberto Zunino (@ UniTN)

(@ UniCA)

A smart contract is a computerized protocol that executes
the terms of a contract [...] to minimize the need for trusted
intermediaries and transaction costs.

Nick Szabo, 1994

Smart contract platforms

▪ Ethereum
▪ Hyperledger
▪ Rootstock, Tezos, ... (?)

“
Smart contracts

3

A smart contract is a computerized protocol that executes
the terms of a contract [...] to minimize the need for trusted
intermediaries and transaction costs.

Nick Szabo, 1994

Smart contract platforms

“
Smart contracts

4

WHY?

Why smart contracts on Bitcoin?

▪ exchange BTC (rather than ETH)

▪ underlying guarantees (theorems!) on the
security of the blockchain
[Garay,Kiayias,Leonardos, EUROCRYPT’15] [...]

▪ bugs in Solidity code are difficult to spot
(recall the DAO and the Parity attacks!)

▪ narrower attack surface (txs vs. EVM/Solidity)
5

Bitcoin contracts are cryptographic protocols
to transfer BTC, executed respecting the
consensus protocol of the blockchain.

Bitcoin smart contracts

cond

6

Problems

7

▪ Bitcoin was not designed for smart contracts
▫ ...still, many use cases exist
▫ unclear expressiveness (off-chain protocols!)

▪ Low level scripting language
▫ poorly documented
▫ standards to adhere (minimal push, P2SH, ...)
▫ subtleties require to inspect Bitcoin Core source code

▪ no formal specification
⇒ no automatic verification

8

Bitcoin contracts in literature

9

Bitcoin transactions

10

Bitcoin in a nutshell

11

BobAlice

Bitcoin in a nutshell

12

BobAlice

Transaction

Blockchain

T

Bitcoin in a nutshell

13

T
Alice owns 1 BTC Sȵ˔ʞˆɵɸ

BobAlice

Signature

Bitcoin in a nutshell

14

BobAlice

T'
Bob owns 1 BTC

T
Alice owns 1 BTC Sȵ˔ʞˆɵɸ

T

Bitcoin in a nutshell

15

BobAlice

T'
Bob owns 1 BTC Aʎɸɑɛ

T
Alice owns 1 BTC Sȵ˔ʞˆɵɸ

T

Bitcoin in a nutshell

16

BobAlice

T'
Bob owns 1 BTC Aʎɸɑɛ

T
Alice owns 1 BTC Sȵ˔ʞˆɵɸ

T T'

More advanced features

17

Multi-input

Multi-output

Custom out scripts:
out = λx.e

Timelock
constraints

Example: Bitcoin scripting language

◎ Stack-based language for out scripts

OP_SHA256 52..3e OP_EQUAL OP_SWAP 04..91

OP_CHECKSIG OP_BOOLOR OP_SWAP 04..40d

OP_CHECKSIG OP_BOOLAND

18

◎ Difficult to write and to read

◎ No formal semantics

Example: signature verification

19

A formal model of Bitcoin transactions*

■ Abstracts from low-level details

■ Concrete enough to be used as an alternative
documentation

■ Formalises advanced features, e.g.:

○ Custom out scripts

○ Signature modifiers

○ SegWit

■ Exploitable to build further abstractions...

20

* Atzei, Bartoletti, Lande, Zunino. Financial Cryptography 2018

Bitcoin transactions

TB

Alice Bob

21

TA

Bitcoin transactions

in: TA
TB

Alice Bob

22

TA

Bitcoin transactions

in: TA

out: λx.verkB(x), 1 BTC

TB

Alice Bob

23

TA

Bitcoin transactions

in: TA

out: λx.verkB(x), 1 BTC

TB

Alice Bob

24

TA

"out":[
{"value":"1.00",
"scriptPubKey":"OP_SHA256 3e..00
 OP_EQUALVERIFY b5..e2 OP_CHECKSIG"
}]

Bitcoin transactions

in: TA
wit: sigkA(TB)
out: λx.verkB(x), 1 BTC

TB

Alice Bob

25

TA

TB.wit ⊨ TA.out

The witness
satisfies the
out script

General form of transactions

26

in: (T1,1); (T2,3)
wit: sigk(T); sigk(T)

out: λx.verk(x), 1 BTC;
λx.verk’(x), 1 BTC

T

T1

T.wit(1) ⊨ T1.out(1)

T.wit(2) ⊨ T2.out(3)

T2

Time constraints

in: (T1,1); (T2,3)

absLock: after 8.3.2018
relLock: 2 days after T1,

3 days after T2

T

27

T1 T2

A formal model of Bitcoin transactions

Script

Transaction Signature

Substitution

Signature
verification

Script
evaluation

Script
verification

Output
redeeming

Unspent
output

Blockchain

Consistent
update

Consistent
blockchain

Theorem:
No double
spending

LTS of
blockchain

28

Theorem:
Non increasing

value

Theorem: No double spending

If B is a consistent blockchain, then

∀T1 ≠ T2 ∊ B :

ran(T1.in) ∩ ran(T2.in) = Ø

29

T

T1 T2

Theorem: No double spending

30

T

T1 T2

If B is a consistent blockchain, then

∀T1 ≠ T2 ∊ B :

ran(T1.in) ∩ ran(T2.in) = Ø

31

BALZaC: Bitcon Abstract Language, analyZer and Compiler

https://blockchain.unica.it/balzac
https://github.com/balzac-lang/balzac

32

BALZaC: Bitcon Abstract Language, analyZer and Compiler

33

BALZaC: Bitcon Abstract Language, analyZer and Compiler

Smart contracts
(as endpoint protocols)

34

Example: timed commitment

◎ Alice wants to commit a secret s but reveal
it some time later

◎ Bob wants to be assured that he will either:
○ learn the secret within time t

○ or be economically compensated

[Andrychowicz et al. 2014]
35

Bitcoin smart contracts are crypto protocols,
which exploit advanced features of transactions

Example: timed commitment

◎ A chooses a
secret s

◎ She broadcasts h
s.t. h=H(s)

◎ She can reveal
the secret before
time t

out: λ x σ.
(H(x)=h and verkA(σ)) or
afterAbs t: verkB(σ), 1BTC

Commit

36

Example: timed commitment

◎ A chooses a
secret s

◎ She broadcasts h
s.t. h=H(s)

◎ She can reveal
the secret before
time t

out: λ x σ.
(H(x)=h and verkA(σ)) or
afterAbs t: verkB(σ), 1BTC

Commit

37

Example: timed commitment

◎ A chooses a
secret s

◎ She broadcasts h
s.t. h=H(s)

◎ She can reveal
the secret before
time t

out: λ x σ.
(H(x)=h and verkA(σ)) or
afterAbs t: verkB(σ), 1BTC

Commit

38

Example: timed commitment

◎ A chooses a
secret s

◎ She broadcasts h
s.t. h=H(s)

◎ She can reveal
the secret before
time t

39

wit: s,
sigķA(Reveal)

Reveal

wit: 0,
sigķB(Timeout)

absLock: t

Timeout

out: λ x σ.
(H(x)=h and verkA(σ)) or
afterAbs t: verkB(σ), 1BTC

Commit

Example: timed commitment

◎ After time t,
B can redeem
the deposit

40

wit: s,
sigķA(Reveal)

Reveal

wit: 0,
sigķB(Timeout)

absLock: t

Timeout

out: λ x σ.
(H(x)=h and verkA(σ)) or
afterAbs t: verkB(σ), 1BTC

Commit

Other Bitcoin contracts

■ Oracles
■ Crowdfunding
■ Escrow and arbitration
■ Micropayments channels (“Lighting network”)
■ Fair multi-player lotteries
■ Gambling games (Poker, ...)
■ Contingent payments (via ZK proofs)
■ …

41

Contracts as processes

42

T0 T1 T2 T3 T4

send/receive

put ask put ask

SoK: unravelling Bitcoin smart contracts
(POST18)

Timed commitment (in prose)

43

Timed commitment (as an endpoint protocol)

PA = put Commit . P’

P’ = τ. put Reveal(s) + τ.P’’

44

PB = put Timeout

+ ask Reveal as x → Q(getSecret(x))

Compensation
branch

Contracts
(as choreographies)

45

BitML contracts

46

Endpoint protocols = local behaviour
■ compensations lead to complex code
■ still have to deal with Bitcoin transactions

BitML = global behaviour
■ contracts as processes (no transactions)
■ two-phases: stipulation and execution
■ no compensations

Bartoletti & Zunino. BitML: a calculus for Bitcoin smart contracts, 2018

A basic example

A declares a 1฿ deposit:

{A:!1฿}

A authorizes to transfer the deposit to B, or
B authorizes to transfer the deposit to A

PayOrRefund =
A:withdraw B + B:withdraw A

47

Mediating disputes (with oracles)

Resolve disputes via a mediator M (paid 0.1฿)

Escrow = PayOrRefund +
A:Resolve +
B:Resolve

Resolve = split
0.1฿ → withdraw M

| 0.9฿ → M:withdraw A + M:withdraw B

48

Timed commitment

{A:!1฿ | A:secret a}

TC = reveal a. withdraw A

 + after t : withdraw B

49

BitML: a 2-players lottery

split
 2฿ → reveal b if 0≤|b|≤1. withdraw B
 + after t : withdraw A
|2฿ → reveal a . withdraw A
 + after t : withdraw B
|2฿ → reveal a b if |a|=|b|. withdraw A
 +reveal a b if |a|≠|b|. withdraw B

50

{A:!3฿ | A:secret a | B:!3฿ | B:secret b}

Executing BitML on Bitcoin

Compiler: BitML → BALZaC → Bitcoin txs

Theorem (Computational soundness):
For each computational run C, there exists a
symbolic run S coherent with C

Therefore, computational attacks are always
represented at the symbolic level.

51

The whole talk in 1 slide

Contracts as
endpoint protocols

Contracts as
choreographies

52

SoK: unravelling Bitcoin
smart contracts

(POST18)

BitML: a calculus for Bitcoin
smart contracts

(submitted)

Bitcoin transactions
A formal model of

Bitcoin transactions
(FC18)

Thank you

53

