Polimi Fintech Journey

An End-to-end Voting-system Based on Bitcoin

Stefano Bistarelli

bista@dmi.unipg.it

• Cybersecurity National Lab

http://www.dmi.unipg.it/cybersecuritylab

from:

Stefano Bistarelli, Marco Mantilacci, Paolo Santancini, Francesco Santini: An end-to-end voting-system based on bitcoin. SAC 2017: 1836-1841

Summary

- e-voting and end-to-end (e)voting
- Bitcoin technology
- An End-to-end Voting-system Based on Bitcoin

Voting systems

electronic voting (also known as evoting) is voting using electronic systems to aid casting and counting votes

E-voting in Estonia .. BEST PRACTICE????

Some criticism to some e-voting platforms

- Extreme Centralization
 - Single point of Failure
- Components of the architecture acting as a black box
- Not transparent polls
- This work only if we completely trust processes, servers, DBs, SWs, and on the officers working to maintain the architecture

E2E Voting systems

- End-to-end auditable or end-to-end voter verifiable (E2E) voting systems
 - attempt to cover the entire path from voter attempt to election totals, giving:
 - ▶ Voter auditing, and
 - ► Universal verifiability.

Bitcoin

Peer-to-peer transactions

No need for third parties

Worldwide payments

Low processing fees

- 2008 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
 Whitepaper sent on cryptography mailing list.
- 2009 first version of bitcoin node implementation Bitcoin-Qt: start of the network and generation of the first bitcoins.

After Bitcoin

Bitcoin ecosystem

BITCOIN Transaction

Send of the transaction

1 - ALICE broadcast the transaction

BLOCKCHAIN

4 - All the node (verify and) accept the block and add the block at the end of the blockchain

Idea

Why not to use Blockchain to store the vote and associate the vote to a bitcoin token?

Voting phases

1. Pre-voting Phase:

- a) Candidate nomination and registration process,
- b) Voter registration process.
- 2. Voting Phase:
 - a) Voter authentication,
 - b) Vote casting,
 - c) Vote transmission and confirmation.

3. Post-voting Phase:

- a) Counting
- b) Result,
- c) Audit administration.

1. Pre-voting Phase

a) Candidate nomination and registration process

K_PUB_CANDIDATO1_BITCOIN

K_PUB_CANDIDATO2_BITCOIN

- b) Voter registration process.
 - The public key of a registered voter will be charged with an amount of bitcoins, which represents the election token to be spent
 - Each voter generates her public/private keys, associated to her wallet.

- However, a public key cannot be directly associated with voter's identity, otherwise anonymity of electors would be not guaranteed
 - Anonymous Kerberos authentication-protocol (RFC 6112: Anonymity Support for Kerberos, APRIL 2011)
 - Blinded Signature

Anonymous Kerberos (RFC8062 (ex 6112)

Blinded Signature (Chaum 1983 Advances in Cryptology Proceedings of Crypto)

Voting Phase

- Voter authentication
 - > Any voter owing a token received in the previous step is authorised to vote
- Vote casting
 - Coincide with a payment to the candidate (sending the token to the candidate)
- Vote transmission and confirmation
 - Coincides with the insertion of the transaction in the mempool and the mining of a block containing the transaction by the miner

Vote casting

Vote transmission: INSERT OF THE VOTE IN BLOCKCHAIN

Post-voting Phase

- Counting
- Result
- Audit administration

Transaction 20					
Input #0 from: previous transaction		1token			
Output #0 to: TDS public address		1token			
			_		
Transaction	n 35				
Input #0 fr	omctransaction 20, index#0, signed	by TDS	1token		
Output #0	>to Alice's public address		1token		
	Transaction 80				
Input #0 from: transaction 35, index#0, signed by Alice Output #0: to Candidate's public address				1token 1token	

The architecture

... E-Voting System (some examples)

Homepage

E-Vote (Electronic Vote System)	
Pre-Vote (registering to service) Vote (make your choice) Post-Vote (take a view of votes)	
University of Perugia Master's Gegree in Computer Science Student - Paolo Santancini	

Bitcoin token vs colored coin assets

- Colored Coins describes a class of methods for representing and managing real world assets on top of the Bitcoin Blockchain.
- Open Assets is a Colored Coin implementation based on the OP_RETURN operator. Metadata is linked from the Blockchain and stored on the web.

Technical Requirements:

- Web Server Apache;
- DBMS Mysql;
- Perl CGI;
- Bitcoin BlockChain (https://bitcoin.org/);
- Open Asset Protocol (Colored Coins

https://github.com/OpenAssets/open-assets-protocol/blob/master/README.md);

- Asset Wallet (es. Coinprism API, Coin Spark, Spark Bit...).

coinvote

Asset ID	AYhL6SECPJdkaByyWr8pT2hnE1w52dKoCU
Ticker	coinvote
Туре	Other
lssuer	Adminvote The authenticity of the issuer could not be verified
Divisibility	Indivisible
Asset definition URL	https://cpr.sm/rbEOLx28GW

Contract Details

Coin holders

E-Voting system coins

>

09380db6f2d15d600760093d469b6b87650a26ec86d5a3efb4f6ad36931b567f							
Tuesday, January 19, 2016 10:31:37 AM							
Bitcoin							
Coinvote	-0.000106	akY5FE3AkQjEbxUXicvqh38dhBq1HYXD5k2 Fees	0.000006 0.0001				
coinvote AYhL6SECPJdkaByyWr8pT2hnE1w52dKoCU							
Coinvote	-1	akY5FE3AkQjEbxUXicvqh38dhBq1HYXD5k2	1				

Classical bitcoin vs OAP

- Voting Token can be:
 - X = one Satoshi (10⁻⁸ Bitcoin) + the mining fee (10⁻⁴ bitcoin) (2 times the number of the voters(1 for sending the token in the prevote phase, and 1 for the vote phase)),
 - ▶ N* 10⁻⁸ + 2N 10⁻⁴
 - ▶ If 1000 voters and current price 1B= 7637 euro,
 - cost (for voting only) would have been 1527 euro

Classical bitcoin vs OAP

- Voting Token can be:
 - An asset (any solution OAP compliant (CoinPrism, CoinSpark, SparkBit) the cost to issue a new asset with CoinPrism is 6* 10⁻⁶ + 10⁻⁴; this need to be paid 1 time at the beginning to create asset, and 2N times to transfer assets in the prevote and vote phase
 - ► (2N+1)(6* 10⁻⁶ + 10⁻⁴)
 - ▶ If 1000 voters and current price 1B= 7637 euro,
 - cost (for voting only) would have been 1619 euro

Satisfied properties

- Eligibility and Authentication:
 - > Only authorised voters are able to vote; this is accomplished by the pre-voting phase
- Verifiability and Auditability:
 - It is possible to verify that all the votes have been correctly accounted for in the final tally, and there are reliable and demonstrably authentic election records. The block-chain implements such a public election record, which is public: to modify a block is computationally hard.
- Uniqueness:
 - No voter is able to vote more than once. Doublevoting is prevented by the fact double-spending of tokens is impossible in Bitcoin (see also the post-voting phase in Sec. 3).
- Accuracy:
 - Election systems should record the votes correctly, with an extremely small error-tolerance. The protocol reliability resistance is due to the presence of reliable miners, stimulated by gaining bitcoins as reward.
- Integrity:
 - Votes should not be able to be modified, forged, or deleted without detection. When a transaction is confirmed in the block-chain, votes cannot be deleted or modified. If a vote is modified on the client-side, the voter can detect it once the corresponding transaction is in the block-chain.
- **Vote anonymity:**
 - Neither election authorities nor anyone should be able to determine how any individual voted. Public-keys of voters cannot be associated with their identity (see the pre-voting phase in Sec. 3).
- Counting and Recounting:
 - Voting system must provide easy functions for counting and recounting, in case of any question about the final voting result. Each valid transaction is permanently stored in the block-chain.

Unsatisfied properties

- Receipt-freeness (Uncoercibility).
 - To prevent this, it is possible to adopt permissioned block-chains, where the right to read the block-chain can be granted only to some users. For instance, each voter can read only the block where her transaction is registered in order to still maintain the verifiability property; some official entities can be instead allowed to read the whole block-chain with the purpose to count votes. In this way, unless the coercer is on-site during the voting process, the elector can vote for other candidates.
- Data confidentiality and Neutrality.
 - Votes must be protected from external reading during the voting process. Once a vote has been broadcast to the peer-to-peer network, it is not confidential anymore, and can influence successive voters, who can freely read the block-chain and know candidates' addresses. Permissioned block-chains can be used also in this case, in order to prevent other users to scan the whole block-chain and mine all the votes for each candidate.

Current and future work: Multichain

MultiChain Private Blockchain Platform

Coin Sciences Ltd www.multichain.com

Current and future work: Multichain

Polimi Fintech Journey

An End-to-end Voting-system Based on Bitcoin

Stefano Bistarelli

bista@dmi.unipg.it

• Cybersecurity National Lab

http://www.dmi.unipg.it/cybersecuritylab

from:

Stefano Bistarelli, Marco Mantilacci, Paolo Santancini, Francesco Santini: An end-to-end voting-system based on bitcoin. SAC 2017: 1836-1841