
Incentives behind Consensus in
Distributed Ledgers

Davide Grossi

Institute of Artificial Intelligence

www.ankemarijedamdesign.nl

http://www.ankemarijedamdesign.nl

New transaction broadcasts do not necessarily need to reach all nodes. As long as they reach

many nodes, they will get into a block before long. Block broadcasts are also tolerant of dropped

messages. If a node does not receive a block, it will request it when it receives the next block and

realizes it missed one.

6. Incentive

By convention, the first transaction in a block is a special transaction that starts a new coin owned

by the creator of the block. This adds an incentive for nodes to support the network, and provides

a way to initially distribute coins into circulation, since there is no central authority to issue them.

The steady addition of a constant of amount of new coins is analogous to gold miners expending

resources to add gold to circulation. In our case, it is CPU time and electricity that is expended.

The incentive can also be funded with transaction fees. If the output value of a transaction is

less than its input value, the difference is a transaction fee that is added to the incentive value of

the block containing the transaction. Once a predetermined number of coins have entered

circulation, the incentive can transition entirely to transaction fees and be completely inflation

free.

The incentive may help encourage nodes to stay honest. If a greedy attacker is able to

assemble more CPU power than all the honest nodes, he would have to choose between using it

to defraud people by stealing back his payments, or using it to generate new coins. He ought to

find it more profitable to play by the rules, such rules that favour him with more new coins than

everyone else combined, than to undermine the system and the validity of his own wealth.

7. Reclaiming Disk Space

Once the latest transaction in a coin is buried under enough blocks, the spent transactions before

it can be discarded to save disk space. To facilitate this without breaking the block's hash,

transactions are hashed in a Merkle Tree [7][2][5], with only the root included in the block's hash.

Old blocks can then be compacted by stubbing off branches of the tree. The interior hashes do

not need to be stored.

A block header with no transactions would be about 80 bytes. If we suppose blocks are

generated every 10 minutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. With computer systems

typically selling with 2GB of RAM as of 2008, and Moore's Law predicting current growth of

1.2GB per year, storage should not be a problem even if the block headers must be kept in

memory.

4

BlockBlock
Block Header (Block Hash)

Prev Hash Nonce

Hash01

Hash0 Hash1 Hash2 Hash3

Hash23

Root Hash

Hash01

Hash2

Tx3

Hash23

Block Header (Block Hash)

Root Hash

Transactions Hashed in a Merkle Tree After Pruning Tx0-2 from the Block

Prev Hash Nonce

Hash3

Tx0 Tx1 Tx2 Tx3

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto

satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online

payments to be sent directly from one party to another without going through a

financial institution. Digital signatures provide part of the solution, but the main

benefits are lost if a trusted third party is still required to prevent double-spending.

We propose a solution to the double-spending problem using a peer-to-peer network.

The network timestamps transactions by hashing them into an ongoing chain of

hash-based proof-of-work, forming a record that cannot be changed without redoing

the proof-of-work. The longest chain not only serves as proof of the sequence of

events witnessed, but proof that it came from the largest pool of CPU power. As

long as a majority of CPU power is controlled by nodes that are not cooperating to

attack the network, they'll generate the longest chain and outpace attackers. The

network itself requires minimal structure. Messages are broadcast on a best effort

basis, and nodes can leave and rejoin the network at will, accepting the longest

proof-of-work chain as proof of what happened while they were gone.

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as

trusted third parties to process electronic payments. While the system works well enough for

most transactions, it still suffers from the inherent weaknesses of the trust based model.

Completely non-reversible transactions are not really possible, since financial institutions cannot

avoid mediating disputes. The cost of mediation increases transaction costs, limiting the

minimum practical transaction size and cutting off the possibility for small casual transactions,

and there is a broader cost in the loss of ability to make non-reversible payments for non-

reversible services. With the possibility of reversal, the need for trust spreads. Merchants must

be wary of their customers, hassling them for more information than they would otherwise need.

A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties

can be avoided in person by using physical currency, but no mechanism exists to make payments

over a communications channel without a trusted party.

What is needed is an electronic payment system based on cryptographic proof instead of trust,

allowing any two willing parties to transact directly with each other without the need for a trusted

third party. Transactions that are computationally impractical to reverse would protect sellers

from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In

this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed

timestamp server to generate computational proof of the chronological order of transactions. The

system is secure as long as honest nodes collectively control more CPU power than any

cooperating group of attacker nodes.

1



78 Retweets 205 Likes

Nick Szabo
@NickSzabo4

Game theory & economics require
speculation about subjective mental states &
ignoring the many possible motives beyond
proximate incentives.

4:08 PM - 5 Jul 2017

Follow 

Incentives are misleading & dangerous basis for security unless objective math
(computer science) done first & much engineerng margin added.

 12  78 

 Tweet your reply

Austin Williams @onewayfunction · 5 Jul 2017
Replying to @NickSzabo4
I try to tell people this. Modeling a player's utility fxn is *absolutely* the most
difficult thing when attempting to apply Game Thy IRL.



 1  1 

Nick Szabo @NickSzabo4

205

2

Austin Williams @onewayfunction · 5 Jul 2017
A close second is modeling their strategy set. Applying game thy to the real
world is insidiously difficult.



 2  1 2

Austin Williams @onewayfunction · 5 Jul 2017
(Special cases, like Poker and Monopoly, notwithstanding)



 1  

Austin Williams @onewayfunction · 5 Jul 2017
This comes from someone who's studied the mathematical thy of games at a



Nick Szabo⚡ on Twitter: "Game theory & economics require sp... https://twitter.com/nickszabo4/status/882738070616809472

1 of 1 19/03/2018, 14:55

PART I

Coordination & Common Knowledge
(or : What are DLs actually for?)

[convention or agreement] that is, a sense of interest, suppos’d to be
common to all, and where every single act is perform’d in expectation
that others are to perform the like. Without such a convention, no one
wou’d ever […] have been induc’d to conform his actions to it

D. Hume, Treatise of Human Nature, 1738-40

Coordinated Attacks

General 1 sends “Attack at dawn” to General 2

Message arrives. Would General 2 attack?

General 2 sends “Acknowledged” to General 1.

Message arrives. Would General 1 attack?

Win Lose
Lose Wait

Attack

Attack

Wait

Wait

J. Halpern. Reasoning About Knowledge: an Overview. 1986
A. Rubinstein. The Electronic Mail Game: Strategic Behavior under ‘Almost CK’. AER, 1989

& Empty Ledgers

Type of coordination enabled in DLs

Nakamoto consensus (under some assumptions) suffices to
ensure coordination within a given time window

J. Halpern, R. Pass. A Knowledge-Based Analysis of the Blockchain Protocol. TARK’17, 2017

… based on cryptographic proof instead of trust, allowing any two willing parties to
transact directly with each other without the need for a trusted third party
S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System 2008

proof-of-work fault-tolerant replication

If i is honest and T is a prefix of i’s ledger then there is CK among all honest
nodes that in � steps T will be a prefix of all honest nodes’ ledgers

Each honest agent knows that within a bound, from that point on …
Each honest agent knows that within a bound, from that point on …

Each honest agent knows that within a bound, from that point on …
 …

T is a prefix in all honest nodes’ ledgers

PART II

Hash of n Hash of txn’s Nonce

n + 1n

proof-of-work

n-1

Is the Hash of n + 1 < V ?
Yes

No Try again!

5 10 15 200.999980

0.999985

0.999990

0.999995

1.000000

Hash of [Input transactions, Recipient PublicK]

Signature Sender (with Private K)

Hash of [Input transactions, Recipient PublicK]

Signature Sender (with Private K)

Why would I build a block? And why would I check it?

Why mining?

All pay - one wins

R&D race

NE exists and is unique

N. Dimitri. Bitcoin Mining as a Contest. Ledger, 2017

J. Ma, J. Gans, R. Tourky. Market Structure in Bitcoin Mining. NBER Working Paper, 2018

ui(h) = (R� cihi) ·
hiP

j2N hj
� cihi ·

h�iP
j2N hj

Investments in
hashing power

Reward for
solving puzzle i’s cost of hashing

i’s hashing power

probability that i solves
the puzzle first

probability that i
fails solving the

puzzle first

Why Verifying?

In Bitcoin verification work is negligible compared to mining, but
that’s not the case in general (see Ethereum)

Miners are aware that non-valid transactions have the potential
to decrease Bitcoin’s value

But this is ultimately a public good game and there is potential
for 'tragedy of the commons’ scenario

L. Luu, J. Teusch, R. Kulkarni, P. Saxena. Demistifying Incentives in the Consensus Computer, CCS’15, 2015

PART III
Why should I fork (or rather not)?

Other reasons:

Signal delays

Double-spending attacks

Software upgrades (11 March 2013)

proof-of-work

Blockchain Folk-Theorem

True, at certain levels of abstraction

But …

B. Biais, C. Bisiere, M. Bouvard, C. Casamatta. The Blockchain Folk Theorem. TSE Working Papers, 17-187, 2018

Nakamoto Consensus rules out the occurrence of forks

A. Miller, J. LaViola. Anonymous Byzantine Consensus from Moderately-Hard Puzzles: A Model for Bitcoin, 2014
A. Narayanan. Analysing the 2013 Bitcoin Fork: Centralized Decision Making Saved the Day, 2015

23:06 Luke Dashjr so??? yay accidental hardfork? :x
23:06 Jouke Hofman Holy crap

23:22 Gavin Andresen the 0.8 fork is longer, yes? So majority hashpower is 0.8....
23:22 Luke Dashjr Gavin Andresen: but 0.8 fork is not compatible earlier will be accepted by
all versions

23:23 Gavin Andresen first rule of bitcoin: majority hashpower wins
23:23 Luke Dashjr if we go with 0.8, we are hardforking

23:24 Luke Dashjr so it's either 1) lose 6 blocks, or 2) hardfork for no benefit
23:25 BTC Guild We'll lose more than 6

23:43 BTC Guild I can single handedly put 0.7 back to the majority hash power I just need
confirmation

23:44 Pieter Wuille BTC Guild: imho, that is was you should do, but we should have consensus
first

https://freedom-to-tinker.com/2015/07/28/analyzing-the-2013-bitcoin-fork-centralized-decision-making-saved-the-day/

Blockchain Folk-Theorem

With no centralised solution:

Gradual consensus towards 0.8 branch (vs 0.7)

Coordination on which branch to mine harder/slower

Double spending attacks more possible

Fork would survive longer (than 8hrs), likely because of
vested interest of miners on 0.7 fork

Nakamoto Consensus rules out the occurrence of forks

Keynes' Beauty Contest

Shubik’s dollar auction

B. Biais, C. Bisiere, M. Bouvard, C. Casamatta. The Blockchain Folk Theorem. TSE Working Papers, 17-187, 2018
A. Miller, J. LaViola. Anonymous Byzantine Consensus from Moderately-Hard Puzzles: A Model for Bitcoin, 2014

A. Narayanan. Analysing the 2013 Bitcoin Fork: Centralized Decision Making Saved the Day, 2015

https://freedom-to-tinker.com/2015/07/28/analyzing-the-2013-bitcoin-fork-centralized-decision-making-saved-the-day/

PART IV

Why not just voting?

… If the majority were based on one-IP-address-onve-vote, it could be subverted by anyone
able to allocate many IPs.
S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System 2008

fault-tolerant replication

If the general is loyal, then every loyal lieutenant obey the same
order

Solvable with private messages if: |Loyals| > 3|Non-Loyals|

BUT: Centralized identity management (prevents Sybil Attacks)

“Attack!”“Attack!”

He said: “Attack!”

He said: “Retreat!”

The Byzantine Generals Problem
LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE
SRI International

Reliable computer systems must handle malfunctioning components that give conflicting information
to different parts of the system. This situation can be expressed abstractly in terms of a group of
generals of the Byzantine army camped with their troops around an enemy city. Communicating only
by messenger, the generals must agree upon a common battle plan. However, one or more of them
may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that
the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is
solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound
two loyal generals. With unforgeable written messages, the problem is solvable for any number of
generals and possible traitors. Applications of the solutions to reliable computer systems are then
discussed.
Categories and Subject Descriptors: C.2.4. [Computer-Communication Networks]: Distributed
Systems--network operating systems; D.4.4 [Operating Systems]: Communications Management--
network communication; D.4.5 [Operating Systems]: Reliability--fault tolerance
General Terms: Algorithms, Reliability
Additional Key Words and Phrases: Interactive consistency

/

1. INTRODUCTION
A re l iab le c o m p u t e r s y s t e m m u s t be able to cope wi th the fa i lure of one or more
of i ts c o m p o n e n t s . A fai led c o m p o n e n t m a y exhib i t a type of b e h a v i o r t h a t is
o f t en o v e r l o o k e d - - n a m e l y , s end ing conf l ic t ing i n f o r m a t i o n to d i f fe rent pa r t s of
t he sys tem. T h e p r o b l e m of coping wi th th i s type of fa i lure is expressed abs t r ac t l y
as the B y z a n t i n e G e n e r a l s P rob l em. W e devote the m a j o r p a r t of the pa pe r to a
d i scuss ion of th i s a b s t r a c t p r o b l e m a n d conc lude by ind ica t ing how our so lu t ions
can be used in i m p l e m e n t i n g a re l iab le c o m p u t e r sys tem.

W e imag ine t h a t severa l d iv is ions of the B y z a n t i n e a r m y are c a m p e d outs ide
a n e n e m y city, each d iv is ion c o m m a n d e d by i ts ow n general . T h e genera l s can
c o m m u n i c a t e wi th one a n o t h e r on ly by messenger . Af te r obse rv ing the enemy ,
t h e y m u s t decide u p o n a c o m m o n p l a n of ac t ion. However , some of the genera l s

This research was supported in part by the National Aeronautics and Space Administration under
contract NAS1-15428 Mod. 3, the Ballistic Missile Defense Systems Command under contract
DASG60-78-C-0046, and the Army Research Office under contract DAAG29-79-C-0102.
Authors' address: Computer Science Laboratory, SRI International, 333 Ravenswood Avenue, Menlo
Park, CA 94025.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0164-0925/82/0700-0382 $00.75
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, Pages 382-401.

Distributed Fault-Tolerant Replication

N

Sets of nodes which, once they agree
on a value, they stabilise on that value

(Simple Games)

No mining! Cryptocurrency
has no role in consensus

Do we stabilize on one value or not?

Realising optimal consensus requires nodes with veto power

Which should be rewarded

… but these should be few (centralization) for otherwise
consensus would be hard (possibility of deadlocks)

Proposition Let C be a coalitional system:

• QC has a non-empty core if and only if VC 6= ;;

• if VC 6= ;, then the core consists of all imputations in which non-veto
nodes get value 0.

Simple game induced by C
Largest consensus forms

Veto nodes
(they belong to all coalitions)

D.B. Gillies. Some Theorems on n-Person Games. PhD thesis, Department of Mathematics, Princeton, 1959

Conclusions

The variety of incentive structures (games) behind consensus
protocols for DL is extremely rich: many challenges!

Some incentive structures still unclear (verification in PoW)

Models of parallel game-playing?

Do we have the right solution concepts for interaction in DLs? They
should be validated by data

Stellar Consensus (in a nutshell)

N nodes holds (binary) opinions on the value of a slot (in the ledger),
and some may misbehave (Byzantine failure)

All ‘good’ nodes should be able to stabilize their opinion on one
value of the slot (liveness)

No two ‘good’ nodes should stabilize on opposite opinions (safety)

Stellar exploits the notion of trust: when all nodes I trust agree on a
value, then I accept that value and stabilize on it

Who to trust is an individual choice

Trust should exhibit structural properties which make safety and
liveness possible (Federated Byzantine Agreement Systems)

Nodes should be able to recognise agreement among trusted
nodes (Federated Voting)

Theorem Let a coalitional system C be given. If C satisfies quorum intersection,
then for any coalition X ✓ N (of ill-behaved nodes), the set of nodes that are
befouled (by X) is a dispensible coalition.

Safety & Liveness in FBASs

N

X plus the ‘good’ nodes whose
ability for correct agreement

depends on X

A set of nodes that can be eliminated
without jeopardising safety and liveness

of the remaining nodes

Is Quorum Intersection feasible?

It is implausible to leave the responsibility to individual nodes to
guarantee QI

So how is QI enforced in Stellar?

Proposition Quorum-Intersection is co-NP-complete.

The Stellar Consensus Protocol 9

systems thanks to the duplicity of the ill-behaved nodes. In short, FBAS ⟨!,"⟩ can
survive Byzantine failure by a set of nodes ! ⊆ ! iff ⟨!,"⟩ enjoys quorum intersection
after deleting the nodes in ! from ! and from all slices in ". More formally:

Definition (delete). If ⟨!,"⟩ is an FBAS and ! ⊆ ! is a set of nodes, then to delete !
from ⟨!,"⟩, written ⟨!,"⟩!, means to compute the modified FBAS ⟨! ⧵ !,"!⟩ where
"!(#) = { $ ⧵ ! ∣ $ ∈ "(#) }.

It is the responsibility of each node # to ensure "(#) does not violate quorum inter-
section. One way to do so is to pick conservative slices that lead to large quorums. Of
course, a malicious # may intentionally pick "(#) to violate quorum intersection. But
a malicious # can also lie about the value of "(#) or ignore "(#) to make arbitrary as-
sertions. In short, "(#)’s value is not meaningful when # is ill-behaved. This is why
the necessary property for safety—quorum intersection of well-behaved nodes after
deleting ill-behaved nodes—is unaffected by the slices of ill-behaved nodes.

Suppose Figure 6 evolved from a three-node FBAS #1, #2, #3 with quorum intersection
to a six-node FBAS without. When #4, #5, #6 join, they maliciously choose slices that
violate quorum intersection and no protocol can guarantee safety for !. Fortunately,
deleting the bad nodes to yield ⟨!,"⟩{#4,#5,#6} restores quorum intersection, meaning
at least {#1, #2, #3} can enjoy safety. Note that deletion is conceptual, for the sake of
describing optimal safety. A protocol should guarantee safety for #1, #2, #3 without their
needing to know that #4, #5, #6 are ill-behaved.

4.2. Dispensable sets (DSets)

We capture the fault tolerance of nodes’ slice selections through the notion of a dis-
pensible set or DSet. Informally, the safety and liveness of nodes outside a DSet can be
guaranteed regardless of the behavior of nodes inside the DSet. Put another way, in an
optimally resilient FBAS, if a single DSet encompasses every ill-behaved node, it also
contains every failed node, and conversely all nodes outside the DSet are correct. As
an example, in a centralized PBFT system with 3% + 1 nodes and quorum size 2% + 1,
any % or fewer nodes constitute a DSet. Since PBFT in fact survives up to % Byzantine
failures, its robustness is optimal.

In the less regular example of Figure 3, {#1} is a DSet, since one top tier node can
fail without affecting the rest of the system. {#9} is also a DSet because no other node
depends on #9 for correctness. {#6,… , #10} is a DSet, because neither #5 nor the top tier
depend on any of those five nodes. {#5, #6} is not a DSet, as it is a slice for #9 and #10
and hence, if entirely malicious, can lie to #9 and #10 and convince them of assertions
inconsistent with each other or the rest of the system.

To prevent a misbehaving DSet from affecting the correctness of other nodes, two
properties must hold. For safety, deleting the DSet cannot undermine quorum inter-
section. For liveness, the DSet cannot deny other nodes a functioning quorum. This
leads to the following definition:

Definition (DSet). Let ⟨!,"⟩ be an FBAS and ! ⊆ ! be a set of nodes. We say ! is a
dispensible set, or DSet, iff:

(1) (quorum intersection despite !) ⟨!,"⟩! enjoys quorum intersection, and

(2) (quorum availability despite !) Either ! ⧵ ! is a quorum in ⟨!,"⟩ or ! = !.

Quorum availability despite ! protects against nodes in ! refusing to answer re-
quests and blocking other nodes’ progress. Quorum intersection despite ! protects
against the opposite—nodes in ! making contradictory assertions that enable other
nodes to externalize inconsistent values for the same slot. Nodes must balance the
two threats in slice selection. All else equal, bigger slices lead to bigger quorums with

