The European Supervisory Authorities (ESAs) have opened today a call for evidence regarding the PRIIPs (Packaged retail and insurance-based investment products) Regulation…
L’iniziativa di Finriskalert.it “Il termometro dei mercati finanziari” vuole presentare un indicatore settimanale sul grado di turbolenza/tensione dei mercati finanziari, con particolare attenzione all’Italia.
Significato degli indicatori
Rendimento borsa italiana: rendimento settimanale dell’indice della borsa italiana FTSEMIB;
Volatilità implicita borsa italiana: volatilità implicita calcolata considerando le opzioni at-the-money sul FTSEMIB a 3 mesi;
Future borsa italiana: valore del future sul FTSEMIB;
CDS principali banche 10Ysub: CDS medio delle obbligazioni subordinate a 10 anni delle principali banche italiane (Unicredit, Intesa San Paolo, MPS, Banco BPM);
Tasso di interesse ITA 2Y: tasso di interesse costruito sulla curva dei BTP con scadenza a due anni;
Spread ITA 10Y/2Y : differenza del tasso di interesse dei BTP a 10 anni e a 2 anni;
Rendimento borsa europea: rendimento settimanale dell’indice delle borse europee Eurostoxx;
Volatilità implicita borsa europea: volatilità implicita calcolata sulle opzioni at-the-money sull’indice Eurostoxx a scadenza 3 mesi;
Rendimento borsa ITA/Europa: differenza tra il rendimento settimanale della borsa italiana e quello delle borse europee, calcolato sugli indici FTSEMIB e Eurostoxx;
Spread ITA/GER: differenza tra i tassi di interesse italiani e tedeschi a 10 anni;
Spread EU/GER: differenza media tra i tassi di interesse dei principali paesi europei (Francia, Belgio, Spagna, Italia, Olanda) e quelli tedeschi a 10 anni;
Euro/dollaro: tasso di cambio euro/dollaro;
Spread US/GER 10Y: spread tra i tassi di interesse degli Stati Uniti e quelli tedeschi con scadenza 10 anni;
Prezzo Oro: quotazione dell’oro (in USD)
Spread 10Y/2Y Euro Swap Curve: differenza del tasso della curva EURO ZONE IRS 3M a 10Y e 2Y;
Euribor 6M: tasso euribor a 6 mesi.
I colori sono assegnati in un’ottica VaR: se il valore riportato è superiore (inferiore) al quantile al 15%, il colore utilizzato è l’arancione. Se il valore riportato è superiore (inferiore) al quantile al 5% il colore utilizzato è il rosso. La banda (verso l’alto o verso il basso) viene selezionata, a seconda dell’indicatore, nella direzione dell’instabilità del mercato. I quantili vengono ricostruiti prendendo la serie storica di un anno di osservazioni: ad esempio, un valore in una casella rossa significa che appartiene al 5% dei valori meno positivi riscontrati nell’ultimo anno. Per le prime tre voci della sezione “Politica Monetaria”, le bande per definire il colore sono simmetriche (valori in positivo e in negativo). I dati riportati provengono dal database Thomson Reuters. Infine, la tendenza mostra la dinamica in atto e viene rappresentata dalle frecce: ↑,↓, ↔ indicano rispettivamente miglioramento, peggioramento, stabilità rispetto alla rilevazione precedente.
Disclaimer: Le informazioni contenute in questa pagina sono esclusivamente a scopo informativo e per uso personale. Le informazioni possono essere modificate da finriskalert.it in qualsiasi momento e senza preavviso. Finriskalert.it non può fornire alcuna garanzia in merito all’affidabilità, completezza, esattezza ed attualità dei dati riportati e, pertanto, non assume alcuna responsabilità per qualsiasi danno legato all’uso, proprio o improprio delle informazioni contenute in questa pagina. I contenuti presenti in questa pagina non devono in alcun modo essere intesi come consigli finanziari, economici, giuridici, fiscali o di altra natura e nessuna decisione d’investimento o qualsiasi altra decisione deve essere presa unicamente sulla base di questi dati.
I vasti cambiamenti degli ultimi due anni hanno reso meno rilevanti gran parte dei dati storici ufficiali delle imprese, tradizionalmente forniti dai credit bureau. E questo sia che si valuti il merito di credito, il rischio di abbandono (churn risk) o che si debbano segmentare i clienti, ad esempio in funzione del loro potenziale futuro.
È intuitivo che dopo due anni di pandemia l’analisi dei dati contabili su base storica (tipica dei modelli di credit scoring d’impostazione tradizionale) non si presti a facili generalizzazioni. Troppi cambiamenti strutturali.
Basta pensare che da aprile 2020 a settembre 2021 lo Stato ha concesso alle imprese italiane oltre 200 miliardi di prestiti garantiti al 90%-100%. Questo (relativamente) facile accesso al credito ha permesso a molte imprese di sopravvivere: ossigeno puro, che ha consentito una lunga apnea all’economia italiana colpita dalla pandemia. Il problema è che l’effetto dell’ossigeno puro consiste nell’allungare abnormalmente le apnee, che risultano sostanzialmente “dopate”. E quando l’effetto dell’ossigeno termina, arrivano le contrazioni diaframmatiche: la magia dell’apnea “drogata dall’ossigeno” finisce lì, tra gli spasmi addominali. Per le PMI italiane le prime contrazioni diaframmatiche si avvertiranno verosimilmente a inizio 2022. Ora, alcune aziende si sono riprese, altre saranno in seria difficoltà, senza ossigeno e senza manco l’aria: considerate che secondo Istat il 45% delle aziende italiane era a rischio già a fine 2020 – si veda la Figura 1 – e ora siamo a fine 2021.
Figura 1: la situazione delle imprese italiane
Fonte dati: Istat, “Rapporto sulla competitività dei settori produttivi” 2021.
Per un intermediario finanziario, distinguere tempestivamente le imprese in buona salute finanziaria dalle altre è dunque essenziale. Discorso analogo si applica agli individui.
Ora, i dati transazionali (o transactional data) possono essere di grande aiuto in questo senso. Provengono dai conti correnti, quindi si tratta di dati onnipresenti e abbondanti (chi non ha un c/c?), che forniscono informazioni puntuali sulla tipologia e la dinamica dei flussi di cassa e dei saldi. Non mentono, se opportunamente masticati e digeriti: per ottenere informazioni salienti sulla salute finanziaria del titolare del conto occorre istruire una macchina a fare più o meno quello che fa un Sapiens se gli viene chiesto di dare un’occhiata a un storico di un c/c. Cioè leggere attentamente ed interpretare i dati, evidenziando “pattern”, elementi strutturali e situazioni tipiche, o atipiche. Gli algoritmi di Machine Learning funzionano diversamente dal cervello umano, ma proprio come accade ai Sapiens, ce la fanno, e riescono a delineare lo stato di salute finanziaria del c/c sfruttando la capacità interpretativa di tecniche di Unsupervised Machine Learning, Sequence Labeling e Anomaly Detection. Va anche detto che i dati transazionali possono essere utilmente aggregati ad altre fonti di dati (ad esempio, open data, o altre banche dati interne) utilizzando metodi Bayesiani, perfetti a tal fine. Il risultato è un quadro d’insieme efficace per rivelare lo stato di salute finanziaria di un soggetto – si veda l’esempio della Figura 2.
Figura 2: “the big picture” di un’azienda rivelata dai transactional data (Fonte: elaborazione Virtual B/SDG)
I transactional data, oltre a dare informazioni tempestive per svelare lo stato di salute finanziaria di un’impresa (o individuo), consentono individuare rischi di filiera e di sistema. La Network Analysis, utilizzata “cum grano salis”, dà una grossa mano in tal senso, evidenziando i fenomeni di percolazione del rischio nel tessuto economico di un’area o un settore. Infatti, dai dati transazionali emerge chi-paga-chi: la catena di dipendenze nei flussi di cassa che descrive il fluire del denaro tra clienti e fornitori, a cascata. Questa rete di relazioni tra imprese fatta di pagamenti tra A e B, con importi, segni, date e causali, è la materia prima dalla quale si possono trarre informazioni preziosissime. Utilizzando la Network Analysis si possono cogliere queste informazioni. La Figura 3 rappresenta la filiera produttiva (la chiameremo “Filiera X”): ogni puntino è un’impresa, piccola o grande, collegata alle altre da linee che rappresentano i flussi di denaro (e, su un’altro piano, di beni e servizi). Per un intermediario finanziario che eroga servizi finanziari a queste imprese, emerge un quadro sistematico. I punti rossi rappresentano aziende che costituiscono “snodi” critici all’interno di una rete d’imprese. Con strumenti di questo tipo si possono prevenire situazioni di stress finanziario e rischio sistemico, anziché gestirle a posteriori.
Figura 3: rischi di sistema (Fonte: elaborazione Virtual B)
Da non trascurare infine un fatto: i transactional data sono nettamente più economici dei dati dei bureau creditizi. Grazie a PSD2 è relativamente semplice accedere a servizi di data aggregation e, dietro consenso del cliente, ottenere i dati dei suoi rapporti bancari, ricostruendo il quadro d’insieme.
In definitiva, i transactional data non sostituiscono né i dati, né i modelli tradizionali di credit scoring e di segmentazione della clientela, bensì si affiancano ad essi. Essi forniscono segnali più abbondanti e a più alta frequenza rispetto ai dati derivanti dalla contabilità ufficiale, quindi possono costiture variabili aggiuntive con cui arricchire i credit model tradizionali, oltre a fornire valutazione tempestive dei clienti – ad esempio valutazioni prventive di affidabilità.
E questo è importante, nell’epoca dei servizi fruibili sempre e istantaneamente, ovunque, in modalità multi-canale.
Fino al 29 ottobre sarà possibile presentare progetti innovativi nel settore FinTech per Milano Hub, il centro di innovazione realizzato dalla Banca d’Italia per sostenere l’evoluzione digitale del mercato finanziario…
Since the first meteoric rise of Bitcoin in 2017, asset managers and investment firms have looked to seize the opportunity in the growing space, attempting to bring the cryptocurrency to Wall Street…
L’iniziativa di Finriskalert.it “Il termometro dei mercati finanziari” vuole presentare un indicatore settimanale sul grado di turbolenza/tensione dei mercati finanziari, con particolare attenzione all’Italia.
Significato degli indicatori
Rendimento borsa italiana: rendimento settimanale dell’indice della borsa italiana FTSEMIB;
Volatilità implicita borsa italiana: volatilità implicita calcolata considerando le opzioni at-the-money sul FTSEMIB a 3 mesi;
Future borsa italiana: valore del future sul FTSEMIB;
CDS principali banche 10Ysub: CDS medio delle obbligazioni subordinate a 10 anni delle principali banche italiane (Unicredit, Intesa San Paolo, MPS, Banco BPM);
Tasso di interesse ITA 2Y: tasso di interesse costruito sulla curva dei BTP con scadenza a due anni;
Spread ITA 10Y/2Y : differenza del tasso di interesse dei BTP a 10 anni e a 2 anni;
Rendimento borsa europea: rendimento settimanale dell’indice delle borse europee Eurostoxx;
Volatilità implicita borsa europea: volatilità implicita calcolata sulle opzioni at-the-money sull’indice Eurostoxx a scadenza 3 mesi;
Rendimento borsa ITA/Europa: differenza tra il rendimento settimanale della borsa italiana e quello delle borse europee, calcolato sugli indici FTSEMIB e Eurostoxx;
Spread ITA/GER: differenza tra i tassi di interesse italiani e tedeschi a 10 anni;
Spread EU/GER: differenza media tra i tassi di interesse dei principali paesi europei (Francia, Belgio, Spagna, Italia, Olanda) e quelli tedeschi a 10 anni;
Euro/dollaro: tasso di cambio euro/dollaro;
Spread US/GER 10Y: spread tra i tassi di interesse degli Stati Uniti e quelli tedeschi con scadenza 10 anni;
Prezzo Oro: quotazione dell’oro (in USD)
Spread 10Y/2Y Euro Swap Curve: differenza del tasso della curva EURO ZONE IRS 3M a 10Y e 2Y;
Euribor 6M: tasso euribor a 6 mesi.
I colori sono assegnati in un’ottica VaR: se il valore riportato è superiore (inferiore) al quantile al 15%, il colore utilizzato è l’arancione. Se il valore riportato è superiore (inferiore) al quantile al 5% il colore utilizzato è il rosso. La banda (verso l’alto o verso il basso) viene selezionata, a seconda dell’indicatore, nella direzione dell’instabilità del mercato. I quantili vengono ricostruiti prendendo la serie storica di un anno di osservazioni: ad esempio, un valore in una casella rossa significa che appartiene al 5% dei valori meno positivi riscontrati nell’ultimo anno. Per le prime tre voci della sezione “Politica Monetaria”, le bande per definire il colore sono simmetriche (valori in positivo e in negativo). I dati riportati provengono dal database Thomson Reuters. Infine, la tendenza mostra la dinamica in atto e viene rappresentata dalle frecce: ↑,↓, ↔ indicano rispettivamente miglioramento, peggioramento, stabilità rispetto alla rilevazione precedente.
Disclaimer: Le informazioni contenute in questa pagina sono esclusivamente a scopo informativo e per uso personale. Le informazioni possono essere modificate da finriskalert.it in qualsiasi momento e senza preavviso. Finriskalert.it non può fornire alcuna garanzia in merito all’affidabilità, completezza, esattezza ed attualità dei dati riportati e, pertanto, non assume alcuna responsabilità per qualsiasi danno legato all’uso, proprio o improprio delle informazioni contenute in questa pagina. I contenuti presenti in questa pagina non devono in alcun modo essere intesi come consigli finanziari, economici, giuridici, fiscali o di altra natura e nessuna decisione d’investimento o qualsiasi altra decisione deve essere presa unicamente sulla base di questi dati.
Questo sito utilizza cookie tecnici e di profilazione, propri e di terze parti, per garantire la corretta navigazione, analizzare il traffico e misurare l'efficacia delle attività di comunicazione.
Questo sito Web utilizza i cookie per migliorarne l'esperienza di navigazione. I cookie classificati come necessari, sono essenziali alle funzioni di base sito e vengono sempre memorizzati nel tuo browser. I cookie di terze parti, che ci aiutano ad analizzare e capire come utilizzi questo sito, vengono memorizzati nel tuo browser solo con il tuo consenso. Di seguito hai la possibilità di disattivare questi cookie. Tieni in conto che la disattivazione di alcuni di questi cookie potrebbe influire sulla tua esperienza di navigazione.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Durata
Descrizione
cookielawinfo-checkbox-analytics
1 year
Cookie tecnico impostato dal plugin GDPR Cookie Consent che viene utilizzato per registrare il consenso dell'utente per i cookie nella categoria "Analitici".
cookielawinfo-checkbox-necessary
1 year
Cookie tecnico impostato dal plugin GDPR Cookie Consent che viene utilizzato per registrare il consenso dell'utente ai cookie.
CookieLawInfoConsent
1 year
Cookie tecnico impostato dal plugin GDPR Cookie Consent per salvare le scelte si/no dell'utente per ciascuna categoria.
viewed_cookie_policy
1 year
Cookie tecnico impostato dal plugin GDPR Cookie Consent che registra lo stato del pulsante predefinito della categoria corrispondente.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Durata
Descrizione
_pk_id.gV3j99y0AE.0928
1 year 27 days
Cookie analitico impostato da Matomo e utilizzato per memorizzare alcuni dettagli sull'utente come l'ID univoco del visitatore
_pk_ses.gV3j99y0AE.0928
30 minutes
Cookie analitico impostato da Matomo di breve durata e utilizzato per memorizzare temporaneamente i dati della visita