L’iniziativa di Finriskalert.it “Il termometro dei mercati finanziari” vuole presentare un indicatore settimanale sul grado di turbolenza/tensione dei mercati finanziari, con particolare attenzione all’Italia.
Significato degli indicatori
Rendimento borsa italiana: rendimento settimanale dell’indice della borsa italiana FTSEMIB;
Volatilità implicita borsa italiana: volatilità implicita calcolata considerando le opzioni at-the-money sul FTSEMIB a 3 mesi;
Future borsa italiana: valore del future sul FTSEMIB;
CDS principali banche 10Ysub: CDS medio delle obbligazioni subordinate a 10 anni delle principali banche italiane (Unicredit, Intesa San Paolo, MPS, Banco BPM);
Tasso di interesse ITA 2Y: tasso di interesse costruito sulla curva dei BTP con scadenza a due anni;
Spread ITA 10Y/2Y : differenza del tasso di interesse dei BTP a 10 anni e a 2 anni;
Rendimento borsa europea: rendimento settimanale dell’indice delle borse europee Eurostoxx;
Volatilità implicita borsa europea: volatilità implicita calcolata sulle opzioni at-the-money sull’indice Eurostoxx a scadenza 3 mesi;
Rendimento borsa ITA/Europa: differenza tra il rendimento settimanale della borsa italiana e quello delle borse europee, calcolato sugli indici FTSEMIB e Eurostoxx;
Spread ITA/GER: differenza tra i tassi di interesse italiani e tedeschi a 10 anni;
Spread EU/GER: differenza media tra i tassi di interesse dei principali paesi europei (Francia, Belgio, Spagna, Italia, Olanda) e quelli tedeschi a 10 anni;
Euro/dollaro: tasso di cambio euro/dollaro;
Spread US/GER 10Y: spread tra i tassi di interesse degli Stati Uniti e quelli tedeschi con scadenza 10 anni;
Prezzo Oro: quotazione dell’oro (in USD)
Spread 10Y/2Y Euro Swap Curve: differenza del tasso della curva EURO ZONE IRS 3M a 10Y e 2Y;
Euribor 6M: tasso euribor a 6 mesi.
I colori sono assegnati in un’ottica VaR: se il valore riportato è superiore (inferiore) al quantile al 15%, il colore utilizzato è l’arancione. Se il valore riportato è superiore (inferiore) al quantile al 5% il colore utilizzato è il rosso. La banda (verso l’alto o verso il basso) viene selezionata, a seconda dell’indicatore, nella direzione dell’instabilità del mercato. I quantili vengono ricostruiti prendendo la serie storica di un anno di osservazioni: ad esempio, un valore in una casella rossa significa che appartiene al 5% dei valori meno positivi riscontrati nell’ultimo anno. Per le prime tre voci della sezione “Politica Monetaria”, le bande per definire il colore sono simmetriche (valori in positivo e in negativo). I dati riportati provengono dal database Thomson Reuters. Infine, la tendenza mostra la dinamica in atto e viene rappresentata dalle frecce: ↑,↓, ↔ indicano rispettivamente miglioramento, peggioramento, stabilità rispetto alla rilevazione precedente.
Disclaimer: Le informazioni contenute in questa pagina sono esclusivamente a scopo informativo e per uso personale. Le informazioni possono essere modificate da finriskalert.it in qualsiasi momento e senza preavviso. Finriskalert.it non può fornire alcuna garanzia in merito all’affidabilità, completezza, esattezza ed attualità dei dati riportati e, pertanto, non assume alcuna responsabilità per qualsiasi danno legato all’uso, proprio o improprio delle informazioni contenute in questa pagina. I contenuti presenti in questa pagina non devono in alcun modo essere intesi come consigli finanziari, economici, giuridici, fiscali o di altra natura e nessuna decisione d’investimento o qualsiasi altra decisione deve essere presa unicamente sulla base di questi dati.
Per le imprese del Regno Unito e Irlanda del Nord (di seguito UK)1 che operano nel settore delle assicurazioni contro i danni, l’Italia è il primo Paese dell’EU27 per numero di assicurati (9,7 mln) e per riserve tecniche (3 €/mld) e il quarto Paese per premi raccolti (1,7 €/mld)2…
The European Securities and Markets Authority (ESMA) has today published the framework for its third EU-wide Central Counterparties (CCPs) stress test…
To increase competitiveness is the main driver for higher potential growth. Member states have to pursue politics and establish institutions that stimulate the dynamics of a competitive private sector…
SWIFT, IBM, Ripple and around 100 other firms and organizations have joined a new blockchain association to promote adoption of the technology across the EU…
On the 26th of March 2019 IVASS
has issued a press release communicating an update on the data related to the
dormant life assurance policies: 208,863 contracts, amounting to 3.9 billion
euros, have been “awakened” by the Italian Regulator.
Dormant life assurance policies are those
that have not been collected by the beneficiaries and lie dormant at insurance
undertakings until they become time-barred. The rights arising from those
policies are barred after 10 years from the event (death or maturity), when the
corresponding benefits are paid to the Dormant Accounts Fund. Dormant policies
can be either contingent on death, if beneficiaries do not cash in the benefits
because they may not be aware of the policy itself, or saving policies not collected
upon maturity for any reason.
The extensive phenomenon of potentially
dormant policies arose from both the shortcomings embedded in the procedures
carried out by the undertaking when checking the deaths of insureds and identifying
its beneficiaries and from the widespread use of generic formulations to
indicate the beneficiaries when underwriting the contract.
To contrast and reduce this phenomenon,
the Regulator has:
carried out an analysis on the dormant policies, started in 2017
suggested the undertaking some guidelines to improve the processes for
ascertaining the deaths and identifying the beneficiaries, requiring the
undertakings to enhance their processes by the 30th September 2018
required the undertaking to make available on their website a contact
point in charge of responding to enquiries from possible beneficiaries on the
existence of life assurance policies in their favour and to proceed with the “run-off”
of the dormant policies identified
suggested the market to check if a deceased family member had
underwritten a policy by contacting the “search service for life insurance
covers” of ANIA (the National Association of Insurance Undertakings) or the
insurance intermediary, the bank or the insurance undertaking the family member
was a customer of
sensitized the policyholders to provide the undertaking with all the
information (address, telephone number and/or e-mail address) necessary to
contact the beneficiaries and make them aware of the existence of the policy
and inform a third party who can inform the beneficiaries when the insured event
occurs.
IVASS has started the investigation on dormant policies (first wave) back in 2017, publishing some important results on the 3rd September 2018. At that date, 187,493 policies amounting to 3.5 billion euros had already been “awakened” by matching the tax code of the insured people with the data stored in the tax-payers database by “Agenzia delle entrate” – Revenue Agency, the Italian IRS (Internal Revenue Service) – while other 900,000 contracts still had to be checked. The analysis, updated at the 31st of January 2019 and published on the 26th March 2019, shows that the Regulator has “awakened” other 21,370 policies, amounting to other 335 million euros. The table below, released by IVASS, reports the details of those policies and clarifies that, out of the original 900,000 contracts, 13,171 still must be verified. These ones are related to old policies, with no obligation of indicating the tax code of the insured and with no clear indication of the beneficiary. IVASS suggests in those cases to use specialized companies to retrieve the missing information. The rest of the policies (873,000 = 96%* 900,000) have correctly not been paid being the insured person alive at maturity or the policy insolvent (i.e. the policyholder has stopped the payment of the premiums, causing the resolution of the contract)
In addition to the 21,370 “awakened”
policies, there are other 436 contracts, amounting to 7 million euros, that
have become time-barred and should be paid to the Dormant Account Fund.
IVASS is now waiting for a feedback on
other policies investigated in the last months (second wave), whose data were
provided by the undertaking on the 30th October 2018. Indeed, on the
3rd September 2018, the regulator decided to extend the perimeter of
the analysis to contracts expired in the period 2001-2006 and to those expired in
2017 and not yet settled. By the end of May 2019 the undertakings will have to
give IVASS a feedback on the cases highlighted by the regulator, with a dead
insured the undertakings were not aware of.
IVASS is now investigating the policies
(third wave) whose data were provided by EEA foreign undertakings last 28th
February 2019. These policies are related to contracts either expired between
2001 and 2017 or to whole life policies outstanding at 31 December 2018. The
aim of this analysis is to offer the same level of protection to all the
beneficiaries, independently of the nationality of the undertaking.
Following a proposal from IVASS, a new law
has been issued on December 2018: every insurance company operating in Italy
shall check at the end of each solar year whether its insured are still alive.
If not, the undertaking shall pay the beneficiary and inform the Regulator by
the next 31st March. The first check will be carried out next 31st
December 2019.
L’iniziativa di Finriskalert.it “Il termometro dei mercati finanziari” vuole presentare un indicatore settimanale sul grado di turbolenza/tensione dei mercati finanziari, con particolare attenzione all’Italia.
Significato degli indicatori
Rendimento borsa italiana: rendimento settimanale dell’indice della borsa italiana FTSEMIB;
Volatilità implicita borsa italiana: volatilità implicita calcolata considerando le opzioni at-the-money sul FTSEMIB a 3 mesi;
Future borsa italiana: valore del future sul FTSEMIB;
CDS principali banche 10Ysub: CDS medio delle obbligazioni subordinate a 10 anni delle principali banche italiane (Unicredit, Intesa San Paolo, MPS, Banco BPM);
Tasso di interesse ITA 2Y: tasso di interesse costruito sulla curva dei BTP con scadenza a due anni;
Spread ITA 10Y/2Y : differenza del tasso di interesse dei BTP a 10 anni e a 2 anni;
Rendimento borsa europea: rendimento settimanale dell’indice delle borse europee Eurostoxx;
Volatilità implicita borsa europea: volatilità implicita calcolata sulle opzioni at-the-money sull’indice Eurostoxx a scadenza 3 mesi;
Rendimento borsa ITA/Europa: differenza tra il rendimento settimanale della borsa italiana e quello delle borse europee, calcolato sugli indici FTSEMIB e Eurostoxx;
Spread ITA/GER: differenza tra i tassi di interesse italiani e tedeschi a 10 anni;
Spread EU/GER: differenza media tra i tassi di interesse dei principali paesi europei (Francia, Belgio, Spagna, Italia, Olanda) e quelli tedeschi a 10 anni;
Euro/dollaro: tasso di cambio euro/dollaro;
Spread US/GER 10Y: spread tra i tassi di interesse degli Stati Uniti e quelli tedeschi con scadenza 10 anni;
Prezzo Oro: quotazione dell’oro (in USD)
Spread 10Y/2Y Euro Swap Curve: differenza del tasso della curva EURO ZONE IRS 3M a 10Y e 2Y;
Euribor 6M: tasso euribor a 6 mesi.
I colori sono assegnati in un’ottica VaR: se il valore riportato è superiore (inferiore) al quantile al 15%, il colore utilizzato è l’arancione. Se il valore riportato è superiore (inferiore) al quantile al 5% il colore utilizzato è il rosso. La banda (verso l’alto o verso il basso) viene selezionata, a seconda dell’indicatore, nella direzione dell’instabilità del mercato. I quantili vengono ricostruiti prendendo la serie storica di un anno di osservazioni: ad esempio, un valore in una casella rossa significa che appartiene al 5% dei valori meno positivi riscontrati nell’ultimo anno. Per le prime tre voci della sezione “Politica Monetaria”, le bande per definire il colore sono simmetriche (valori in positivo e in negativo). I dati riportati provengono dal database Thomson Reuters. Infine, la tendenza mostra la dinamica in atto e viene rappresentata dalle frecce: ↑,↓, ↔ indicano rispettivamente miglioramento, peggioramento, stabilità rispetto alla rilevazione precedente.
Disclaimer: Le informazioni contenute in questa pagina sono esclusivamente a scopo informativo e per uso personale. Le informazioni possono essere modificate da finriskalert.it in qualsiasi momento e senza preavviso. Finriskalert.it non può fornire alcuna garanzia in merito all’affidabilità, completezza, esattezza ed attualità dei dati riportati e, pertanto, non assume alcuna responsabilità per qualsiasi danno legato all’uso, proprio o improprio delle informazioni contenute in questa pagina. I contenuti presenti in questa pagina non devono in alcun modo essere intesi come consigli finanziari, economici, giuridici, fiscali o di altra natura e nessuna decisione d’investimento o qualsiasi altra decisione deve essere presa unicamente sulla base di questi dati.
Effective
official sector surveillance and crisis lending depend upon an accurate assessment
of debt sustainability. Debt sustainability analysis (DSA), aims precisely to
detect and quantify any latent public debt risks (IMF 2013b), and, also, to determine
the combination of official financing and adjustment measures that will bring a
country’s debt to a sustainable level. The IMF’s exceptional access policy
stipulates a debt restructuring delivering sufficient relief before the IMF can
provide financing, if debt is not deemed sustainable with high probability.
The Greek debt
crisis revealed two main concerns regarding the effectiveness of traditional
DSA (Consiglio and Zenios 2015a, Zettelmeyer et al. 2016). First, around crisis
episodes, uncertainty is high and focusing on average dynamics may conceal
potential future risks. Second, as official lending
has moved into addressing the problems of economies with large and liquid public
bond markets, the traditional approach faces criticism that it neglects that sovereigns
issue debt recurrently with the underlying debt management techniques (Guzman
and Lombardi 2018, Corsetti et al. 2018).
To cope with uncertainty we need
DSA tools that facilitates a view beyond mean value projections. IMF authors
propose a ”fan-chart approach” to debt sustainability (Celasun et al., 2006), and Consiglio and Zenios (2015b) introduce
the optimization of a measure of tail risk, arguing that ”the devil is in the
tails”.
But the task at
hand does not stop at estimating uncertainty. The public debt management
offices actively manage public debt risks, for instance, by combining shorter
and longer maturities, which can affect not only borrowing costs but also debt
dynamics. Hence, debt flow dynamics become critical under the accommodative
terms of the official help. For
instance, IMF (2013a) and Grauwe (2015) find that the Greek debt could be considered
sustainable under the official lending (concessional) conditions, but Consiglio
and Zenios (2015a) show that sustainability is highly unlikely even under favourable
(post-adjustment program) market conditions. Following intense debates with
European institutions, the IMF changed the way it evaluates DSA (IMF 2013b),
and is now advocating the setting of two limits: one on sovereign gross
financing needs (an aggregate of a country’s primary balance, interest payments,
and maturing debt), and a second on debt stock dynamics.
These
developments in institutional policy bring to the frontline of DSA the flow
features of debt. However, debt flows are critically affected by the
sovereign’s issuance strategy which in turn affects debt stocks.
Standard DSA
models largely ignore the funding strategy, and debt flows become less informative because
they do not account for the debt managers’ impact on debt dynamics. There is a
need for a DSA framework with elements of risk management that can quantify the
trade-off between refinancing risks and debt costs – or, more broadly, between
debt stock and flows. Such an enhanced framework can provide important insights
and better inform policy.
In a recent
working paper (Athanasopoulou et al., 2018) we tackle both issues by enriching the
traditional DSA framework with an optimizing issuer operating in a risk
environment. In this setting a government chooses the issuance strategy, from a
set of different maturities, to minimize borrowing costs while controlling
refinancing risks. This implies that reducing refinancing risks comes with
longer maturities and, therefore, with higher costs that weigh on debt stock. This
potential conflict between lower financing needs and higher debt costs unfolds
through the funding strategy. In this framework we add constraints to incorporate into the tool the limits prescribed
by IMF.[2]
With this approach we ensure that debt levels and refinancing needs remain within
acceptable levels, with high probability.
In this note we highlight
the key insights from using our framework.
Optimizing debt sustainability analysis: features and lessons
The model we
develop enriches the DSA framework by taking into account for the issuer’s optimizing
behaviour, and adding constraints to limit the pace of debt stock reduction and
the level of refinancing. These constraints incorporate the new critical
elements of DSA analysis into our optimizing problem. Hence, the model
integrates the current DSA practices with the debt financing decisions of the
sovereign debt managers, and it does so within a risk framework accounting for
uncertainty. Furthermore, we model the feedback loop between debt stock and
refinancing rates that in turn feed back into debt stock (Gabriele, 2017).
The model uses
scenario analysis. It builds on a long tradition of multi-period, multi-stage
stochastic models, that find numerous applications in the risk management of
large-financial institutions (Zenios and Ziemba 2007). Our work shows that this
technology can be transposed into the context of sovereigns. This is especially
relevant in light of the recent IMF suggestion that sovereigns should gauge the
resilience of public finances, not just debt, to tail risks (IMF, 2018).
Skipping over technical
details, we outline key features of our model:
Scenario representation of
macroeconomic, fiscal, and financial variables. The scenarios are calibrated to
a country’s conditions and observed market data, using historical correlations.
Interest rates are driven by a stochastic process of risk-free interest rates
and the nonlinear feedback of the country’s debt level on its borrowing rates.
Optimization of debt financing
decisions to trade off debt financing cost with refinancing risks.
Simultaneous tracking of debt
stock and debt flow dynamics, identifying trade-offs within sustainability
constraints.
A measure of tail risk
(Conditional Value-at-Risk, CVaR, of debt stock and/or debt flow) allows
policymakers to draw conclusions with high confidence.
The key innovation is the ability to
optimize debt financing decisions within a risk framework. This innovation is
of critical importance for advanced economies, as these tend to have a rich
debt issuance strategy. Our approach contrasts with traditional DSA approaches
where debt refinancing is normally exogenously assumed to happen with a fixed
(usually, five-year) maturity. The model parametrizes the refinancing risk tolerance
with a value (omega) on the tail risk measure of gross financing needs,. Higher values of omega
imply a higher refinancing risk. Assuming that 5% is the acceptable confidence
level for the policymakers, we see solutions such that the top 5% of outcomes
have gross financing needs (as percent of GDP) smaller than omega .
We highlight two key lessons from applying
the model to a realistic economy.
Risk management for debt financing comes at a cost
Figure 1 shows
expected interest payments for different levels of risk (omega). We observe
that higher refinancing risk implies lower expected interest payments. The same
figure also shows the weighted average maturity of issued debt, and we observe
that risk averse sovereigns should choose issuance strategies that resort more
often to long-term financing instruments. Those, however, are more expensive.
Likewise, we observe a shift from long-term to short-term issuance as risk
tolerance increases. This shift creates even greater risks when a country is in
trouble. Our model captures the “gambling for redemption” effect of what Conesa
and Kehoe (2015) for high risk countries.
Figure 1: Expected interest payments (NIP) and weighted average maturity at issuance (WAMI) for different risk levels
Trading off debt flow
and stock dynamics
Our simulations reveal also a trade-off between the dynamics of gross financing needs and those of debt stocks. Average debt stock and gross financing needs, under the optimal issuance strategy, move in opposite directions as we change the acceptable level of risk. The fan charts in Figures 2(a) and 2(b) clearly make the point for two different values of risk (high in blue, low in red).
Figure 2: Gross financing needs and debt stock move in opposite directions as we change the risk tolerance
An important value-added of our model is that it quantifies
this trade-off in both temporal and stochastic dimensions. Reducing refinancing
risks is always desirable, but at what point does this become too costly? How
much should a Treasury increase the weighted average maturity of its issuances
to reduce tail refinancing risks by 1%? The relationship between these
variables is nonlinear and addressing these questions without a rich and
realistic quantitative tool can generate misleading policy advice. The model
provides important insights into these issues.
Are
the solutions relevant?
The trade-offs we identified are pertinent for policymakers
only to the extend they have significant quantitative effects. For our (realistic)
calibrated economy, we find that reducing risk from a relatively high level to
the lowest attainable level implies about a 5-year increase in the weighted
average maturity of issued debt and an increase in the effective interest rates
of 0.8% on average. Consistent with these effects, gross financing needs drop
by about 8% while debt deteriorates by 9%.
Such numbers are significant for any sovereign and in case of crisis
countries can make the difference between sustainability or not. We also found
that the sensitivity of solution to the level of acceptable risk increases with
the initial stock of debt and with shorter debt maturities, so the model is
more effective for countries that are in, or approaching, a crisis situation.
Conclusions
Our model
quantifies the trade-off between debt stocks and debt
flows and makes clear the relevant risks
by optimizing the debt financing decisions. This framework allows us to provide,
among other matters, answers to three important policy questions:
What are the costs and benefits of
reducing refinancing risks?
What are the minimum refinancing risks to be faced for a given level
of debt reduction?
What is the size and timing for reducing financing needs to preserve
a specific level of refinancing risks, while targeting a specific amount of debt
reduction?
When calibrated to a specific economy, this
model can answer these questions. Our framework offers policymakers the ability
to refine their assessment of alternative policies on future debt dynamics. Our
approach also adds new risk factors that enrich the standard assessments by
evaluating refinancing risks and the relevant costs for reducing them.
References
M. Athanasopoulou, A. Consiglio, A. Erce, A. Gavilan, E.
Moshammer, and S.A. Zenios. Risk
management for sovereign financing within a debt sustainability framework.
Working Paper 31, European Stability Mechanism, Luxembourg, 2018.
O. Celasun, X. Debran, and J.D.
Ostry. Primary surplus behaviour and risks to fiscal sustainability in emerging
market countries: A “fan-chart” approach. Working Paper 06/67, International
Monetary Fund, Washington, DC, 2006.
J.C. Conesa and T.J. Kehoe. Gambling
for redemption and self-fulfilling debt crises. Research Department Staff Report 465, Federal Reserve Bank of
Minneapolis, 2015.
A. Consiglio and S.A. Zenios. Risk management optimization for sovereign debt restructuring. Journal of Globalization and Development,
6(2):181–214, 2015a.
A. Consiglio, and
S.A. Zenios. Greek debt sustainability: The devil is in the
tails. VOX, CEPR’s Policy Portal, August 2015b.
G. Corsetti, A.
Erce, and T. Uy. Debt Sustainability and the Terms of Official Support, ADEMU
Working Papers, 2018.
P. De Grauwe. Greece is solvent but illiquid: Policy
implications. VOX, CEPR’s Policy Portal, July 2015.
C. Gabriele, M. Athanasopoulou, A. Erce, and J. Rojas.
Debt stocks meets gross financing needs: A flow perspective into
sustainability. Working Paper Series No. 24, European Stability Mechanism,
Luxembourg, 2017.
M. Guzman and D. Lombardi. Assessing the appropriate
size of relief in sovereign debt restructuring. Research Paper 18-9, Columbia
Business School, New York, NY, 2018.
IMF, Greece: Ex-post Evaluation of
Exceptional Access under the 2010 Stand-By Arrangement, International Monetary
Fund, 2013a.
IMF, Staff Guidance Note for Public
Debt Sustainability Analysis in Market-Access Countries, International Monetary
Fund, 2013b.
IMF, Fiscal Monitor: Managing public
wealth, International Monetary Fund, 2018.
J. Zettelmeyer, E. Kreplin, and U. Panizza. Does Greece
Need More Official Debt Relief? If So, How Much?, Peterson Institute for
International Economics, Working Paper 17-6, 2017.
S.A.
Zenios and W.T. Ziemba, editors.
Handbook of Asset and Liability Management. Vol. 1. Theory and Methodology and
Vol. 2 Applications and Case Studies.
Handbooks in Finance, 2007.
[1] The views expressed herein are those of the authors and do not necessarily represent those of the ESM or ESM policy. M. Athanasopoulou, A. Erce, A. Gavilan and E. Moshammer are with the European Stability Mechanism, Luxembourg. A. Consiglio is with the University of Palermo, Palermo, Italy. S.A. Zenios is with the University of Cyprus, Nicosia, CY, Non-Resident Fellow, Bruegel, Brussels, and Senior Fellow, Wharton Financial Institutions Center, University of Pennsylvania, USA.
[2] Within
the IMF framework, limits for gross financing needs are set at 15% of GDP for
emerging economies and 20% for advanced countries.
The point is that decentralized networks, such as those based on blockchain models, can often enable more positive overall social outcomes despite the relative inefficiency of their command-and-control architecture. It’s useful to contemplate this idea, and McAfee’s colorful metaphor, in relation to the current state of play on the Internet.
Speech by Benoît Cœuré at the Banque de France Symposium & 34th SUERF Colloquium on the occasion of the 20th anniversary of the euro on “The Euro Area: Staying the Course through Uncertainties”,Paris, 29 March 2019.
Questo sito utilizza cookie tecnici e di profilazione, propri e di terze parti, per garantire la corretta navigazione, analizzare il traffico e misurare l'efficacia delle attività di comunicazione.
Questo sito Web utilizza i cookie per migliorarne l'esperienza di navigazione. I cookie classificati come necessari, sono essenziali alle funzioni di base sito e vengono sempre memorizzati nel tuo browser. I cookie di terze parti, che ci aiutano ad analizzare e capire come utilizzi questo sito, vengono memorizzati nel tuo browser solo con il tuo consenso. Di seguito hai la possibilità di disattivare questi cookie. Tieni in conto che la disattivazione di alcuni di questi cookie potrebbe influire sulla tua esperienza di navigazione.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Durata
Descrizione
cookielawinfo-checkbox-analytics
1 year
Cookie tecnico impostato dal plugin GDPR Cookie Consent che viene utilizzato per registrare il consenso dell'utente per i cookie nella categoria "Analitici".
cookielawinfo-checkbox-necessary
1 year
Cookie tecnico impostato dal plugin GDPR Cookie Consent che viene utilizzato per registrare il consenso dell'utente ai cookie.
CookieLawInfoConsent
1 year
Cookie tecnico impostato dal plugin GDPR Cookie Consent per salvare le scelte si/no dell'utente per ciascuna categoria.
viewed_cookie_policy
1 year
Cookie tecnico impostato dal plugin GDPR Cookie Consent che registra lo stato del pulsante predefinito della categoria corrispondente.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Durata
Descrizione
_pk_id.gV3j99y0AE.0928
1 year 27 days
Cookie analitico impostato da Matomo e utilizzato per memorizzare alcuni dettagli sull'utente come l'ID univoco del visitatore
_pk_ses.gV3j99y0AE.0928
30 minutes
Cookie analitico impostato da Matomo di breve durata e utilizzato per memorizzare temporaneamente i dati della visita